In a transportation problem, demand should be met by supply against minimal transportation costs. The table below shows demand, supply and the transportation cost per quantity for each supply-demand connection. In this example, total demand (350) equals total supply (350). Total supply may exceed total demand, but can never be less, otherwise the problem can not be solved! The application will warn you if in your input the total supply is less than total demand.
Demo data
COST PER QUANTITY | SUPPLY | ||||||||||
14 | 15 | 16 | 18 | 9 | 4 | 7 | 15 | 20 | 232 | ||
DEMAND | 40 | 334 | 356 | 336 | 18 | 45 | 795 | 59 | 291 | 89 | 585 |
14 | 285 | 234 | 805 | 283 | 440 | 325 | 957 | 330 | 796 | 600 | |
26 | 431 | 965 | 600 | 241 | 190 | 417 | 117 | 916 | 631 | 436 | |
18 | 763 | 719 | 550 | 396 | 200 | 619 | 689 | 514 | 108 | 874 | |
10 | 484 | 933 | 792 | 607 | 322 | 548 | 851 | 715 | 802 | 272 | |
30 | 816 | 611 | 225 | 79 | 851 | 425 | 841 | 481 | 500 | 903 | |
18 | 899 | 391 | 165 | 155 | 657 | 231 | 757 | 730 | 48 | 282 | |
8 | 922 | 320 | 661 | 38 | 726 | 760 | 150 | 891 | 483 | 407 | |
4 | 316 | 504 | 123 | 587 | 938 | 706 | 382 | 729 | 547 | 310 | |
6 | 751 | 37 | 825 | 754 | 140 | 323 | 229 | 592 | 571 | 914 | |
6 | 117 | 706 | 414 | 674 | 275 | 703 | 395 | 315 | 115 | 891 | |
12 | 498 | 898 | 858 | 498 | 187 | 411 | 717 | 353 | 560 | 368 | |
18 | 169 | 470 | 643 | 433 | 132 | 652 | 898 | 719 | 555 | 444 | |
2 | 840 | 336 | 860 | 577 | 112 | 292 | 422 | 294 | 411 | 474 | |
20 | 935 | 569 | 443 | 639 | 523 | 549 | 60 | 415 | 409 | 791 | |
32 | 753 | 614 | 610 | 426 | 136 | 578 | 118 | 335 | 751 | 494 | |
20 | 83 | 572 | 108 | 570 | 241 | 946 | 651 | 762 | 790 | 40 | |
36 | 167 | 838 | 963 | 299 | 362 | 90 | 843 | 39 | 50 | 45 | |
28 | 517 | 657 | 914 | 79 | 678 | 811 | 173 | 364 | 930 | 593 | |
2 | 746 | 440 | 747 | 392 | 946 | 456 | 560 | 462 | 798 | 462 |
Optimal quantities: total costs are 102587
OPTIMAL QUANTITIES | SUPPLY | ||||||||||
14 | 15 | 16 | 18 | 9 | 4 | 7 | 15 | 20 | 232 | ||
DEMAND | 40 | 4 | 9 | 2 | 2 | 23 | |||||
14 | 1 | 9 | 4 | ||||||||
26 | 26 | ||||||||||
18 | 18 | ||||||||||
10 | 10 | ||||||||||
30 | 16 | 14 | |||||||||
18 | 18 | ||||||||||
8 | 8 | ||||||||||
4 | 4 | ||||||||||
6 | 6 | ||||||||||
6 | 6 | ||||||||||
12 | 12 | ||||||||||
18 | 7 | 11 | |||||||||
2 | 2 | ||||||||||
20 | 7 | 13 | |||||||||
32 | 32 | ||||||||||
20 | 20 | ||||||||||
36 | 36 | ||||||||||
28 | 28 | ||||||||||
2 | 2 |
With r referring to row, and c to column, and Xrc to the transport quantity from Supplyr to Demandc, and Crc to the transport cost per quantity from Supplyr to Demandc the LP problem can be formulated as:
Minimize Σ Crc × Xrc , subject to
Σ Xrc ≥ Demandc ∀ c
c
Σ Xrc ≤ Supplyr ∀ r
r
Xrc ≥ 0 ∀ r,c
Oversupply
Top-left cell = MIN (minimize costs) 1st row = supply quantities 1st column = demand quantities All other cells = transport cost per quantity |
Initialisation method
The solution will appear here, once run.